{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Python para Estatísticos\n", "\n", "\n", "\n", "Este material foi escrito com o objetivo de introduzir estatísticos e estudantes de Estatística aos conceitos fundamentais da linguagem Python, bem como apresentá-los às ferramentas que mais lhe podem ser úteis, incluindo bibliotecas de computação matemática, visualização de dados, manipulação de bases e bancos de dados, ferramentas de aprendizagem de máquina, computação paralela, computação em GPU, inferência Bayesiana e criação e consumo de API's Web. \n", "\n", "Python é uma linguagem de programação interpretada, de alto nível e de propósito geral. Seu criador, Guido van Rossum, enfatizou **legibilidade** de código e sua abordagem de orientação a objetos permite que projetos de diversos tamanhos sejam desenvolvidos usando código simples, lógico e **fácil de entender**, devido a sua sintaxe clara. Além da orientação a objetos, Python também oferece suporte a outros paradigmas de programação, como programação estruturada e programação funcional. \n", "\n", "A filosofia central da linguagem foi resumida no documento [The Zen of Python (PEP 20)](https://www.python.org/dev/peps/pep-0020/) {cite}`petersZen2004`, que inclui frases como:\n", "\n", "* Belo é melhor do que feio.\n", "* Explícito é melhor do que implícito.\n", "* Simples é melhor do que complexo.\n", "* Complexo é melhor do que complicado.\n", "* Legibilidade conta.\n", "* Se a implementação é difícil de explicar, é uma má ideia.\n", "* Se a implementação é fácil de explicar, deve ser uma boa ideia.\n", "\n", "Python é visualmente mais \"limpa\" do que outras linguagens, além de ser mais intuitiva, pois frequentemente usa palavras da língua inglesa onde outras linguagens usariam pontuações. O nome da linguagem é um tributo ao grupo de comédia britânico Monty Python, o que inspirou os desenvolvedores a fazer com que a linguagem seja divertida de usar. Essa abordagem de desenvolvimento inspirou a criação do neologismo \"pythonico\", que quer dizer que o código é natural e está de acordo com a filosofia minimalita e de ênfase na legibilidade. Por outro lado, códigos difíceis de entender or ler são chamados de não-pythonicos. Usuários e admiradores de Python, sobretudo aqueles considerados mais experientes costumam er chamados de Pythonistas.\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Por que estudar Python?\n", "\n", "Em 2017, o Stack Overflow, website de perguntas e respostas destinado a desenvolvedores, publicou um estudo sobre o rápido crescimento no interesse pela linguagem Python {cite}`robinsonBlog2017`. O estudo considerou apenas o interesse de usuários de países de alta renda e naturalmente avaliou apenas resultados até a sua publicação. A {numref}`python-growth`, obtida por meio da ferramenta [Stack Overflow Trends](https://insights.stackoverflow.com/trends), apresenta as curvas para as mesmas linguagens, considerando usuários de todo o mundo (o que muda as curvas em relação ao estudo citado) e resultados até o meio de 2019. Até o meio de 2012, Python era a sexta linguagem menos buscada das 7 analisadas, tornando-se a linguagem de maior interesse apenas 6 anos depois, no meio de 2018.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ ":::{figure-md} python-growth\n", "\"Crescimento\n", "\n", "Crescimento da porcentagem de perguntas de várias linguagens de programação no Stack Overflow.\n", ":::" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Esse crescimento do interesse por Python extremamente acentuado a partir de 2012 está conectado ao avanço da área de ciência de dados e conhecimentos relacionados, como aprendizagem de máquina, big data, business analytics, entre outras. Python e R costumam ser as linguagens **mais citadas** por cientistas de dados em seus perfis em redes sociais como LinkedIn. Segundo análise da Initiative for Analytics and Data Science Standards (IADSS) {cite}`fayyadSkill2019`, **100%** dos cientistas de dados mencionam conhecimento de Python em seus perfis, enquanto 84% mencionam R. Além disso, como mostra a {numref}`job-listings`, o mercado de trabalho abraçou essas duas linguagens, com **mais de 70%** dos anúncios de vagas para cientistas de dados, retirados de sites como LinkedIn, Indeed, SimplyHired e Monster em outubro de 2018, mencionando Python e mais de 60% mencionando R." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ ":::{figure-md} job-listings\n", "\"20\n", "\n", "20 habilidades mais mencionadas em anúncios de vagas para cientistas de dados {cite}`haleSkill2018`.\n", ":::" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Para completar esta motivação, geramos a tabela abaixo usando Python e a biblioteca _pandas_, dando um gostinho do que vem por aí. Os dados foram obtidos por meio da plataforma [Google Trends](https://trends.google.com.br/trends/) e representam o interesse mundial por quatro tópicos de buscas no Google: Python, R, aprendizagem de máquina e ciência de dados. A quantidade de buscas de cada tópico foi medida semanalmente. O código abaixo calcula o índice de correlação de Spearman do interesse semanal de cada um dos tópicos e todos os outros. Os valores calculados indicam que há relação entre o crescimento do interesse em ciência de dados e aprendizagem de máquina e a quantidade de buscas relacionadas a R e Python. Esta última apresentou correlações quase perfeitas com ciência de dados e aprendizagem de máquina, mostrando que o seu crescimento nos últimos 5 anos está **diretamente conectado** ao crescimento da importância dessas áreas." ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " Python R Machine learning Data science\n", "Python 1.000000 0.369220 0.964809 0.967090\n", "R 0.369220 1.000000 0.287584 0.254663\n", "Machine learning 0.964809 0.287584 1.000000 0.961119\n", "Data science 0.967090 0.254663 0.961119 1.000000" ], "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
PythonRMachine learningData science
Python1.0000000.3692200.9648090.967090
R0.3692201.0000000.2875840.254663
Machine learning0.9648090.2875841.0000000.961119
Data science0.9670900.2546630.9611191.000000
\n
" }, "metadata": {}, "execution_count": 21 } ], "source": [ "import pandas as pd\n", "url = 'https://tmfilho.github.io/pyestbook/data/google-trends-timeline.csv'\n", "trends = pd.read_csv(url, index_col=0, parse_dates=True)\n", "\n", "trends.corr(method='spearman')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "O código abaixo gera um gráfico com as quatro séries temporais de interesse. Os valores são relativos ao maior valor de interesse no período, que nesse caso equivale ao interesse por Python em setembro de 2019." ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAELCAYAAAAiIMZEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydeXhU1fnHPzeTSSbJZN8IJGExgRDIQgi7KIuyKIJVW3+2tVLcrUtrLaitVq1WrdattVpcSusGIrjLrrIpewIEEkgI2fd9JpPJbPf3x52ZJJBAyEKWOZ/n4Qlzc+69ZzLJd975nve8ryTLMgKBQCAYXLj19QQEAoFA0PMIcRcIBIJBiBB3gUAgGIQIcRcIBIJBiBB3gUAgGIS49/UEAEJCQuQRI0b09TQEAoFgQHHw4MEqWZZD2/tevxD3ESNGcODAgb6ehkAgEAwoJEnK7+h7wpYRCASCQYgQd4FAIBiECHEXCASCQUi/8Nzbw2w2U1RUhNFo7OupCHoJjUZDZGQkarW6r6ciEAw6+q24FxUV4evry4gRI5Akqa+nI+hhZFmmurqaoqIiRo4c2dfTEQgGHee1ZSRJeleSpApJkjJaHQuSJGmLJEnZ9q+B9uOSJEmvSZKUI0nSEUmSUro6MaPRSHBwsBD2QYokSQQHB4tPZgJBL9EZz30VsOCMYw8D22RZjgW22R8DLARi7f/uAN7ozuSEsA9uxOsrEPQe57VlZFneIUnSiDMOLwFm2f//X+B7YIX9+P9kpY7wHkmSAiRJipBlubSnJiwQCASujNUm85/dp2loMp9zXFezZcIdgm3/GmY/PgwobDWuyH7sLCRJukOSpAOSJB2orKzs4jR6F5VKRXJyMuPHj+enP/0pBoOhw7F5eXl8+OGHzserVq3i3nvvvRjTFAgELsSBvBqe/jqT177NOee4nk6FbO9zdrvdQGRZXinLcqosy6mhoe3unu1zvLy8SE9PJyMjAw8PD958880Ox54p7gKBQNAbpBXWAXDwT1ecc1xXxb1ckqQIAPvXCvvxIiCq1bhIoKSL9+hXzJw5k5ycHB577DFeffVV5/E//vGPvPbaazz88MPs3LmT5ORkXn75ZQBKSkpYsGABsbGxLF++3HnORx99REJCAuPHj2fFihXO41qtlj/+8Y8kJSUxdepUysvLL94TFAgEA4L0gjqig7wJ1nqec1xXUyG/AG4BnrN//bzV8XslSVoNTAHqe8Jvf/LLYxwvaejuZdoQP9SPP18zrlNjLRYLGzZsYMGCBSxcuJDrrruOBx54AJvNxurVq9m3bx+JiYm8+OKLfPXVV4Biy6Snp5OWloanpydjxozhvvvuQ6VSsWLFCg4ePEhgYCDz5s3js88+49prr6WxsZGpU6fyzDPPsHz5ct566y3+9Kc/9ejzFggEA5u0wlqmjgo+77jzirskSR+hLJ6GSJJUBPwZRdQ/liTpVqAA+Kl9+DfAVUAOYAB+3ZXJ9xeamppITk4GlMj91ltvxcPDg+DgYNLS0igvL2fChAkEB7f/g547dy7+/v4AxMfHk5+fT3V1NbNmzcJhRf3iF79gx44dXHvttXh4eLBo0SIAJk6cyJYtWy7CsxQIBAOF0vomyhuaSY4KOO/YzmTL3NTBt+a2M1YGfnPeu14gnY2wexqH534mt912G6tWraKsrIxly5Z1eL6nZ8vHJpVKhcVi4VwNydVqtTM90DFeIBAIHKQXKH57Z8Rd1JbpAj/5yU/YuHEj+/fvZ/78+QD4+vqi0+nOe+6UKVPYvn07VVVVWK1WPvroIy6//PLenrJAIBgEZFfoARgb4Xfesf22/EB/xsPDg9mzZxMQEIBKpQIgMTERd3d3kpKSWLp0KYGBge2eGxERwbPPPsvs2bORZZmrrrqKJUuWXMzpCwSCAUqlrplAbzUateq8Y6Vz2QQXi9TUVPnMZh2ZmZmMHTu2j2Z0bmw2GykpKaxdu5bY2Ni+ns6Apj+/zgJBf+Ou9w5yqlLPlgeVT/uSJB2UZTm1vbHClrlAjh8/TkxMDHPnzhXCLhAILiqV+mZCfc+dAulA2DIXSHx8PLm5uX09DYFA4IJU6TuXKQMichcIBIIBQ6WumZDzbF5yIMRdIBAIBgCNzRYMJmunbRkh7gKBQDAAqNI3AxAqIneBQCAYPFTqFHEPEZF792ld8veaa66hrq6ur6ckEAhcFIe4i8i9B2hd8jcoKIjXX3+9r6ckEAhcFKctIyL3nmXatGkUFxf39TQEAsEA59O0InIrlTICsizzzq7TPLshkwN5NWeNbWy28P6efGw2mUpdM24SBPl4dOo+AyPPfcPDUHa0Z685JAEWPtepoVarlW3btnHrrbf27BwEAoFL0WSy8uDHh4kJ1fLV/ZdSWmfkL18dB2Df6Ro+vWdGm/Fbjpfzp88yiA3TUqlvJsjHE5Vb53oPi8j9HDhK/gYHB1NTU8OVV17Z11MSCAQDmFOVemRZKQD2xvenKKhRWncmRfpzrKQBk8XWZnxNowmA9MI6KnWmTlsyMFAi905G2D2Nw3Ovr69n0aJFvP7669x///19MheBQDDwybFXdRwV6sPaA0VOsb4maSiHizLJLG0gqdUO1DqDIu5pBXUcK6knKbJzu1NBRO6dwt/fn9dee40XX3wRs/ncHccFAsHgprDGwOp9BciyzFdHSsgq63yXuJwKPSo3iUUJERTXNXGyTIdaJTF/3BBAidBbU9ek6M23WRWU1hu5Mj680/cS4t5JJkyYQFJSEqtXr+7rqQgEgj7knV2neXj9UZ788jj3fpjGm9+f6vS52RU6hgd7Ez9Uqcf+/clKhgV4ERnoRZivJ2kFtW3G1xoUcTdZbbi7SVwxtvPiPjBsmT5Cr9e3efzll1/20UwEAsHF5tO0IuIj/BkzxLfN8TR7dL3qhzwAp2/eGXIq9MSEaokJ0wKQX21gZmwIkiSRHBVwduRuMOHp7kazxcb0mBD8vdWdvpeI3AUCgeAMKnRGHvz4MHe+dwCj2eo83myxklnSwNy4MOKG+DI2wo/C2qZOXdNksZFXbSA2XMvwYB/c7VkvkYHeAEweGURetYHCVm8W9U1mJg4PJGGYP7+cEn1Bz0GIu0AgEJzBpmPlyDLkVRt4eetJbDaZD/cW8F1WBSarjZ+mRrLxt5dxdcIQKnXNNJmsbc6v0BmdvryD/OpGrDaZmDAtapUbI0J8AIgK8gJgXrziu2/MKOOztGJOluuoNZgI8/Xky/suZZ7dl+8swpYRCASCM9iYUcqoEB8mjQji7Z2n7ZuJCvBwV+Lh5CiljWZUkBJ1F9UaiA1vsW8+3l/Ii5tPMmVUMCPtIr7Pvklp3FB/AGJCteRU6Im2XyM62Jv4CD9W7sylUtfMDRMjqTOYCfDu3KalMxGRu0AgGNB8mlbEyfLzN6fvLLWNJvbk1rBg/BAevXoswT4evL+ngAh/DSaLjSF+Gob4a4AWS6Wwtq3v7vDh0wtbFkg3ZpQxMsSHWLvf7vDdo+zXAFg4foizhkxeVSM6o4WAC/DZWyPEXSAQDFh2ZlfyuzWHeeMCMlbOx8H8Wqw2mdlxYfh7qXn+hkTGDfVjzR3TWJw0lCUThjrHOiyVwpq2vrvjcVqBskBaZzDx46lqFowfgiQpXvvsuFDiI/ycIg9w7YRhjArxIW6IL8dLlRTLwC5G7sKWEQgEA47cSj0f7Svg6yOlQMvmIFAskcvHhBLup+nStbPt1xptt1lmjwlj9pgwAF67aUKbsaFaTzRqtzaLoNASyTuyXzYfL8dik1nQyjefODyIbx6Y2ea8qCBvvn1oFi9tPsFr3+YAiMi9N5AkiZtvvtn52GKxEBoayqJFi7p0vREjRlBVVXXW8S+++ILnnuuZXbgd3aMnOXDggNipK+hT3t51mrd3nUYGJo0I5FSlHptNpqzeyPJ1R1izv7DL186p0BPm64m/1/lFVZIkIgO929gyZquNkrom1CqJzNIG6gwm/vltDpeE+pAY6d+pOUQGtVg1nZlHe4jI/Rz4+PiQkZFBU1MTXl5ebNmyhWHDhvX4fRYvXszixYt7/LrdwWq1olKp2v1eamoqqampF3lGAkELaQV1XBoTwnu3TuGDvfnsz6ulpL6J01WNAJTWGymqNfC/H/NRuUncedmo8y5MfpdVgb+3mpwKHbHh2nOObU1UoFcbW6a0zohNhjmjQ9maWcGv3t1HQY2BNXdMdVoy579mi7h31ZYRkft5WLhwIV9//TUAH330ETfddJPze/v27WP69OlMmDCB6dOnc+LECUARxoceeoiEhAQSExP5xz/+4TznH//4BykpKSQkJJCVlQXAqlWruPfeewFYunQp999/P9OnT2fUqFF88sknznNfeOEFJk2aRGJiIn/+85/PO/f333+fyZMnk5yczJ133onVqqRr3X333aSmpjJu3Lg21xkxYgRPPfUUl156KWvXrmXWrFmsWLGCyZMnM3r0aHbu3AnA999/7/z08sQTT7Bs2TJmzZrFqFGjeO2115zX+8tf/kJcXBxXXnklN910Ey+++OIF/OQFgvYxmCycKGsg2V6DJTZMsU9yKvROe6asvomP9xeyckcub3x/ig0ZZee97mOfZ/Do+qOcqmwkJrTz4j56iC/ZFToajMpuUkcUf31KJFFBXpyubOT+OTFMGRXc6WtGB7eIe1dtmQERuT+/73myarJ69JpxQXGsmLzivOP+7//+j6eeeopFixZx5MgRli1b5hS5uLg4duzYgbu7O1u3buXRRx9l3bp1rFy5ktOnT5OWloa7uzs1NS11mkNCQjh06BD/+te/ePHFF3n77bfPumdpaSm7du0iKyuLxYsXc8MNN7B582ays7PZt28fsiyzePFiduzYwWWXXdbuvDMzM1mzZg27d+9GrVZzzz338MEHH/CrX/2KZ555hqCgIKxWK3PnzuXIkSMkJiYCoNFo2LVrFwBvvvkmFouFffv28c033/Dkk0+ydevWs+6VlZXFd999h06nY8yYMdx9990cPnyYdevWkZaWhsViISUlhYkTJ57/hREIzsPRonpsMk5xdyxI5lToyW0Vuft7qRnqr6HGYGrjybeHw0qx2dPSY8J9zzm+NfPiw/n39ly+zazg2gnDnP77+GH+7Fw+50KfHgBD/DSoVRJmq9zlVMgBIe59SWJiInl5eXz00UdcddVVbb5XX1/PLbfcQnZ2NpIkOYuKbd26lbvuugt3d+XHGxQU5DznuuuuA2DixImsX7++3Xtee+21uLm5ER8fT3l5OQCbN29m8+bNTJigLOjo9Xqys7M7FPdt27Zx8OBBJk2aBCjli8PClEWhjz/+mJUrV2KxWCgtLeX48eNOcb/xxhvbXKf1fPPy8tq919VXX42npyeenp6EhYVRXl7Orl27WLJkCV5eSjbBNddc0+65AsGF4likdIh7kI8HQT4ebcS9vMGIj6c70cHeBNq/dy5aCztwQZH7hKhAwv082ZBRqoh7rQGVm0SEf9cWdAFUbhJDA7worDHg69k1mR4Q4t6ZCLs3Wbx4MQ899BDff/891dXVzuOPPfYYs2fP5tNPPyUvL49Zs2YBSneVjrw1T0+lxKdKpcJisZxzjONajq+PPPIId955Z6fmLMsyt9xyC88++2yb46dPn+bFF19k//79BAYGsnTpUoxGo/P7Pj4+3ZqvY1zrnXkCQXepaDDy7u48jGYru3OqiA7yJrhVL9GYMC0ny3XkVytRc63BzKlKPVeODcdktXEgr7ajSwMtqYuOOi4X4rm7uSlVHT8+UIjBZKGwpomhARrcVd1zvaMCvdEZLbh1sjnHWfPq1t1dhGXLlvH444+TkJDQ5nh9fb1zgXXVqlXO4/PmzXNaGkAbW6arzJ8/n3fffddZzKy4uJiKiooOx8+dO5dPPvnEOaampob8/HwaGhrw8fHB39+f8vJyNmzY0O25tcell17Kl19+idFoRK/XO9ctBIILRZZlfvdxOm/tzGX9oSLKG4wsThraZszkEUEcKqijutHE2Ail4mKdwUxUkDexYVqK65pobG4/OIEWn/ze2THMjA0huJOt7BxcMTYco1l5EzlZrmNkSOffHDriyvhw5sSFdfn8bkXukiT9DrgNkIGjwK+BCGA1EAQcAm6WZdnUnfv0NZGRkTzwwANnHV++fDm33HILL730EnPmtHhrt912GydPniQxMRG1Ws3tt9/uXDDtKvPmzSMzM5Np06YBoNVqef/9951Wy5nEx8fz9NNPM2/ePGw2G2q1mtdff52pU6cyYcIExo0bx6hRo5gxY0a753eXSZMmsXjxYpKSkhg+fDipqan4+3cuDUwgaM0nB4vYnVPNMz8Zzy+mDG93zF2zLuHTtGKK65qYGRtCpn0DUFSQF15qJesrt7KRhA5SEQtrDLi7SdwzO4b7uhApJ0cHIEnww6lqTpbrLrgOTHvcMn1Et86XuvrxWZKkYcAuIF6W5SZJkj4GvgGuAtbLsrxakqQ3gcOyLL9xrmulpqbKBw4caHMsMzOTsWPHdmlugv6BXq9Hq9ViMBi47LLLWLlyJSkpKW3GiNdZcD5ufmcvZfVGNv32snNaFD/kVPHUV8d5+trx3PDmjwB8ctc0ArzVXPHSDl76WRLXpUS2e+59H6VxuLCOHctnd3meV7y0nZpGEzWNJv6zdBKzuxF1dxZJkg7KstxuXnJ3bRl3wEuSJHfAGygF5gCO/L3/Atd28x6CAcodd9xBcnIyKSkpXH/99WcJu2DgsvV4OQfzu283doaCGgNjhvie13ueHhPCxt9eRpzdlgFlx6ejvO65FlULawzOUgJdZUJUgLPnaetWeX1Fl20ZWZaLJUl6ESgAmoDNwEGgTpZlh7lVBLS760eSpDuAOwCioy+sTrFgYPDhhx/29RQEvYAsy6xYd4SRIT58cvf0Xr2X1SZTUtfEVQkRnT5H6+mOr8adZouNUK0nbm4S0cHezg1O7VFUa7igLkftkRwdwNqDRYwI9iboAj373qDLkbskSYHAEmAkMBTwARa2M7Rd30eW5ZWyLKfKspwaGhra1WkIBIJeot5g5u2duRhMbRciC2uaqG40cbS4HrPV1qtzKGswYrbKbXZsdoYhfhqiAr2c0X7UGSUCWmMwWajSm5zle7uKIzUzuR9E7dC9BdUrgNOyLFcCSJK0HpgOBEiS5G6P3iOBku5PUyAQXGwe/yKDz9NLKK5r4s/XjHMeT7OXsW222DhRpmP8sN5bKHdsCLpQy2T+GQua0UHeZ/UndXAoX8mbH3MBG5faY0y4L1NHBbEocej5B18EuuO5FwBTJUnylpSk7rnAceA74Ab7mFuAz7s3RYFAcLH5LquCz9NLGBbgxaof8toIY3phHQ77O+2Mnp89jaMu+oVG7g/NH8ND88c4H0cFedFgtFDfZD5r7IaMUrw9VFwaG9Ktubqr3Fh9xzSuiO+evdNTdFncZVnei7JwegglDdINWAmsAB6UJCkHCAbe6YF5CgSCi8i7u08TFeTFV/ddipdaxefpLR/A0wvrmDg8kGAfD9ILelfci2oMuEkwNKB7i52ON4czS/NabTKbjpUze0wYGnX7hfIGKt3KlpFl+c+yLMfJsjxeluWbZVlulmU5V5blybIsx8iy/FNZlpt7arIXG5VKRXJyMuPGjSMpKYmXXnoJm+3cHmNeXl6vLiSKcruCM6lvMvP6dznORs5V+mbe3pnb6V3C209Wsv1kpfOxo7HEosShBPp4EBOmdWaaNFusHCtWinYlRwW06TTUVQprDB3Ot7C2iQh/L2d7u67Suh1eaw7m11Klb2bB+O7npfc3xA7Vc+Dl5UV6ejrHjh1jy5YtzuJZ56K3xT01NbVN5UWB4Kkvj/PCphPst/foXLO/kKe/ziSr7Pyt52w2mT+sPcyKT45gsxdX2WJvLLHQLnitxf1URSMmq42EyADGDfMnt6qRZou1w+ufD6tN5t6P0nj660xnXZjWFNYYiAzsXtQOrSP3ltK8NpvM3zZm4e+lvig56RcbIe6dJCwsjJUrV/LPf/4TWZbJy8tj5syZpKSkkJKSwg8//ADAww8/zM6dO0lOTubll1/ucFxrGhsbufrqq0lKSmL8+PGsWbMGgP379zN9+nSSkpKYPHkyOp2uTbndxsZGli1bxqRJk5gwYQKff64sb6xatYrrrruOBQsWEBsby/Lly5332rhxIykpKSQlJTF37txzXkfQ/9mZXcm6Q0UAzt6bjtZu5yuWBYpnXqFrpqzBSHqRct6GjDKGBXiRYF8ojQnTUtZgpMFoJrtCecMYHa4lOsgbWYaSOqU20b7TNfzps6O8tPkEVvsbxemqRp744hjPbsiktvHsjer//SGPw3bfvj2Lp7DW0O0sFgB/bzV+Gnenhw/wwb4CDuTX8viieLRdLM7VnxkQz6jsr3+lObNnS/56jo1jyKOPXtA5o0aNwmazUVFRQVhYGFu2bEGj0ZCdnc1NN93EgQMHeO6553jxxRf56quvADAYDO2Oa83GjRsZOnSos/5KfX09JpOJG2+8kTVr1jBp0iQaGhqcFRYdPPPMM8yZM4d3332Xuro6Jk+ezBVXXAFAeno6aWlpeHp6MmbMGO677z40Gg233347O3bsYOTIkc6aNx1d58wiYoL+x2dpJfh6uqNrtlClb0aWZadV0hlx35hRilqlrI5uyijDbLHxbVYF982JcRa/c9RLP1Wh51SFHjcJRob4UG9QFicLagyMDPHhpS0n2JOr/E5dER9O3BA/7nrvIKerGrHYbBTWGPjXL9qWff74QCEThwdyskxHWmEt109s2UFaWGOgvKG521ksDqKC2qZDbj1eTkyYlutSer4BT39gQIh7f8LhC5rNZu69917S09NRqVScPHmy3fGdGZeQkMBDDz3EihUrWLRoETNnzuTo0aNEREQ4S/b6+fmddd7mzZv54osvnE0wjEYjBQUFgFI4zFHLJT4+nvz8fGpra7nssssYOXIk0FKKuKPriLIA/Z+cSj0Jkf4cKqilUtdMUW0TVXolQj6fuMuyzIaMMi6NCcEmw7pDxXx1pJSoIC/unnWJc1zreunZFXqig7zxdFc5I+rCGgNWm8yRonoujQlhV04VORV6vj9RyYlyHe/ckkpWmY4XNp1g87EyZ92VxmYLJ8t13DcnFo3azVnKN7O0gUMFtTSZFLvnzLTGrhIV6O385AFgNFsJ8vHodHekgcaAEPcLjbB7i9zcXFQqFWFhYTz55JOEh4dz+PBhbDYbGk37tZtffvnl844bPXo0Bw8e5JtvvuGRRx5h3rx5XHvttef9pZNlmXXr1jFmzJg2x/fu3dthGd72rtnRdQT9G1mWOVWh5/qUYRTUGKjUNTsFMsJfc15xP1bSQFFtE/fNiSHYx5NHPz2Kyk3ihRsS8fZokYaoQC88VG7OTkcx9kg+3N5QorDWwMlyHQaTlSXJQ9mTW01OhZ4vj5Rw+ehQ5o4N57LRoby/J5/P0oud4n7E0XQjOgCLzca/t+diNFtZtTuPNQcKCfbxID7Cr01Xou4Q7ufJj7ktJbubLTb8utifdCAgPPdOUllZyV133cW9996LJEnU19cTERGBm5sb7733nrOFna+vLzpdS3TQ0bjWlJSU4O3tzS9/+UseeughDh06RFxcHCUlJezfvx8AnU53Vj31+fPn849//MP5aSItLe2cz2HatGls376d06dPAy2liC/0OoK+xWK18fp3ORwraUDfbCEmTEuorydVehPphXV4urtxVUIEuVV6LOfYQbohoxSVm8SV8UO4Ij6cfX+8gh3LZ5/VDs5d5caoUB+OlzaQV93ojORVbkpz6KKaJuebSuqIIEaE+LAnt5rCmiZmxCjXUqvcGDfUj5wKPfUGM69ty+bHU0oj9+TIAJKjArHYZDKK652+eHWjybmo2xNo1CpMlpafR7PFhmc3s3D6MwMicu8rmpqaSE5Oxmw24+7uzs0338yDDz4IwD333MP111/P2rVrmT17ttOfTkxMxN3dnaSkJJYuXdrhuNYcPXqUP/zhD7i5uaFWq3njjTfw8PBgzZo13Hfffc4G3We2uHvsscf47W9/S2JiIrIsM2LECKfX3x6hoaGsXLmS6667DpvN5lw3uNDrCPqWHdmVvLDpBFszlS5dMWG+hGo9ya82YLHZiB/qR9wQX8xWmYIaA6Pa6SrksGSmjAzqVB2UySOD+N+P+QDEhrVcLzLQi8JaA+kFdQR4qxkRrNRPd/QsTY4KdI6NCfNl+8lKPksv5qUtJ3F3kxhh75SUaC/Fe6ykgcJaA/H24l/XTug5P9zD3Y1mi9X5CbbZbBXi7qq0F2U7iI2N5ciRI87Hjo5HarWabdu2tRnb3rjWzJ8/n/nz5591fNKkSezZs6fNsVmzZjk7Pnl5efHvf//7rPOWLl3K0qVLnY9bC/XChQtZuLBtCaCOruPqfJpWxJhwP+KHnr3e0RdsP1lJk8nCtkylAYsjKyYmTEuIrycH82upbmxmTlwYsfZFyOwKfbvinl2hJ7eykV93smb4764YzTdHS6nSm5yROyiLlBlHS2kyWUmOCkCSpDaRfUKr0gQxYVrMVpnP04sBsNhkZx2WMF9PfDXuZJXpKK03siR5KH+YH3eBP6Fz4+nuhk1W7qtWSTRbbINu41JrhLgLBO0gyzKPrs9g4fghvHRjcl9PB4C/fp1JbpUejbsKHw8VjSYrAd5qQrQehGo9qbanGsaEaRkZonxCzK9uvxLihqNlSFLnFysDfTx4/vpEXv8uhzFDWrJXogK9qTWYqTWY+fmUaOf9AeKG+OLl0SKejuOHCuqYMjIIGZx1WBxvCjtOVmK1yUT3QPrjmXi6K3NptthQq5QofjBH7oP3mQkE3aDRZKXJbO2wkuDFRt9s4WSFDrNVRtdsYfkCJaqNCdUiSRKhvi0L6LFhvvhp3PH2UFFW3/4G8Q0ZpUyMDiTMr/NNnOeODWf9PTPaRLuOgl7xEX78cqrSJckh4mdWR2wd8V8aE8LHd7atw+JohwcXXkumM3iqFblrtu/kNZptTsEfjPTryP1cjaYFA5/+3ETbsSGo9Y7GvuRIUR2yDD+fEs2JMh0/S43ieEkDYyOUKDrkjGbRkiQxxE9DefQJyhAAACAASURBVIPxrGvlVTWSVabjT1d3P9V14vBAEob589z1CajtDaFjwrRMHRXENWf0OdV6uhPhr6G03siE6MCzrnWm3dPTOKL0ZvuiarPF6hT8wUi/FXeNRkN1dTXBwcFC4AchsixTXV3dYQppX+MQ93Kd0f7x/eJHeGkFtXx8oIggHzUq+9/AH+aNIdC+APr8DYnOsY7IXaN2Y5i9yNYQfw2l9We/OW08pix29kQ9lQh/L76879I2xzzdVay+Y1q74x27XROjzi4T7NgspXKTiPDv+d+L1raM1SZjtspoROR+8YmMjKSoqIjKysrzDxYMSDQaDZGR7fe07Guq9Iq4yzIU1za1uyjZm9Q2mrj9fwcwmKwYTFbc3SRGhvg4hf1Mwuzifkmo1tmgYoi/hr25Z7fC25BRRmKkP5G9YH2cj0WJEYT5avDTnJ1f7ojcI/w1uKt6PqJuidytzpRIEbn3AWq12rmTUiC42Dgid1AqE15scf/rN5nUGcx8ce+lfLSvgPf25J+zw4/DlmltbThsGatNRmUX/JK6Jg4X1rF8Qd9sWLtxUjQ3Tmq/reawAC80arde8duhRchNFpuzguZgXlDtt+IuEPQlbcS95uIvqm46VsZPJgwjfqgfyxeMIbtCx6LEjvuIenmoWDh+SJtNPxH+Giw2mWp9s3PhdKM9/3zh+M73JL1YuLlJ/Cw1qk0efU/ioWqxZRy+u0iFFAhcjCp9MyFaDxqaLBc9Y8ZottJgtDDcvu3eV6Pu0MNuzRu/bFuUa4i/4r2XNRjbiHvcEF9nqmR/46kl43vt2i3ZMjZnmeLBHLkP3mcmEHSDSl0zYb4ahgV6UXSRM2Ycfn/r9MauMMQu6KX1LRkzx0sbmHpGeQFXobXnbjTbPXexoCoQuBaV+mZCfT2R4aJH7g5LqNvibs84KbOLuyzLNJos+Glc88++dbaMiNwFAhelSqeI+6gQH3Iq9M7mExcDh7i3zl3vCsE+HqhVEmX2XPcmsxVZBu9B2JiiM7SO3IXnLhC4AGarjX9+m0OJfXdkbLiWSn0zIVpP4ob4suqHPE6W6xgb4cd3WRUgwewxvdeWzVGPvbuRu5ubRJivxhm565uVqqI+rirurT13s0iFFAgGPSt35PLqtmwi/DVYbTJrDypt60J9PZ3ph+mFdYyN8OOpr46j9XTvVXF3RO7BPt0Td4AQrQc19pozjc2KFaH1HLzR6rlobcu4Qirk4H1mAkEnyKnQ8+q2bK5OiODHR+ay55G5TBqhbI0P9fVkeLA3gd5q0gpqqTOYOF3VSFmDEYvVxitbT7bbF7S7VOqNBHir8egB4dGoVU4ha3RE7h6uGdO5mi0jxF3gsthsMo+sP4KXWsUTi8cBipXx/PWJpEQHkByplLBNjgogvbDO2ZCiSt/MoYI6XtmazWf28rU9SZXORGg3/XYHXh7tiLuL2jKON0uRCikQDHI+2JvP/rxaHlsU38bfHhWqZf09M5zt3ZKjAsmu0LPjpNI5SJbhQL6yrd8h+GdSXNfEP7ZlY+vCQqzD7+8JvNQqmhzibnJtcXd3k3CTwGS1uUQqpBB3gUtSXNfEcxuymBkbwvUp5+72MzsuFFmG//6Y5zy2/7Qi7o6GGWfy1o5c/r7lJJllDRc8t0p7pk5PoGkl7noX99wlScLTXSVSIQWCwczjn2UgA3/9ScJ5q44mRgbw8ynRWG0ySfYF1gP5tQAU1Bio1retmW6zyc5t/o7IPqO4nj+sPcyTXx6jznBun75K37Pi7ohSDXZbxttFPXdQsmOazcJzFwgGJfpmC9uyKvj1jBGdrhv+8MI4ZsQEc/tMpZidzmhxRn2Hi9pG7+lFdc7cckdk//6efD5NK+Z/P+bz5y+OdXifxmYLBpO1R20Zo8kRubu2LQNKpN5saUmF7IlF6/7K4H1mAkEHnKrQA5AwrOMqi2fip1HzwW1TuTohAo09N/ry0aGo3CQO2qN4B5syylCrJCaNCHRG7tkVelKGB3LfnBg+Ty9hm725dWtOlutYvk7pt9tTkbuXh1uL5263ZXw8Bm+0ej4ctozRYkWtkpzVMgcjQtwFLkeOXdxjulB90NHhCGB0uC9TRwXx/p4CZ266LMtsyChj+iUhzIwNJadCT32TmZwKPTFhWu6ZFcOYcF/++GkGOqO5zbXf+zGfjRllxIRpmRDd+Teec6FxV2GxyZitNhpNFjRqt16plT5QUCJ3K81m26Bu1AFC3AUDlNxKPW/vzO3SudkVetQqyVl18UJx1GyJCvLiycXjaTJZefJLxWo5XtpAQY2BheOHODdAfZtVTn2TmdgwLR7ubjx/QyIVOiPPbchqc920wlqmjgpi64OXc0kP1Y93NKg2mq00NltcNsfdgeK52wZ9iz0Q4i4YoKzeX8jTX2fScEb02xlyKvSMCPZx9vy8UCLspXSjAr2JCdNy87ThbMgoo8lkZWNGGW4SXBkfzoToANQqif/szgPaNo7+9YyRfLC3gL251YAivlmlunM25OgKjgXDJoe4u7DfDuChcrPvUB3czbGhm+IuSVKAJEmfSJKUJUlSpiRJ0yRJCpIkaYskSdn2r2d3whUIuomjgUaVrvk8I88mp0JHbHjXI+NwP0fkrkT+U0cFY7XJZJTUsyGjjCkjgwnWeuKrUTMjJoQjRfVAWxvo9/NGExXkxcPrj2Ky2Mgorsdik0mO6tk/F4e4G0029M1Wlxd3xXO32vviDu7YtrvP7lVgoyzLcUASkAk8DGyTZTkW2GZ/LBD0KI4yvJUXKO5Gs5WCGgMx3bA9Zo8JZV58OEPtjagd0fbaA4XkVOhZmNDSDWnBOOX/Wk93p1cPSjriigVxnK5qJL2wzplV09ORu1eryN1gsrj0YiootozJ3onJcxCnQUI3CodJkuQHXAYsBZBl2QSYJElaAsyyD/sv8D2wojuTFAjOpNDeQMNRQfGHU1XkVjbyy6nD2x3/wd58DuTV0thswSZDTLhvl+89ZVQwU1o1vAj19SQy0ItP7AXH5o9rEfcr48N59NOjXBKmPSuf3tE0I72wlsOF9UQGevVYlowDLw8lfnN47gHe7TfYdhWcqZAW26CP3LvzGW0UUAn8R5KkJOAg8AAQLstyKYAsy6WSJLVbPk+SpDuAOwCio9tvmCsQtEeD0Ux9k+K1V+qMVOmb+c0Hh2gyW/n55Gjczkhv0zdbePLL4/h4qPDVqIkb4svkEUE9OqfkqACKapuYODzQadsABGs9+fWMkUS3k08fovUkKsiL/Xm17M+rYU4vVJps7bnrmy1E9lLz6YGCMxXSPPhtme6IuzuQAtwny/JeSZJe5QIsGFmWVwIrAVJTUy9eJwTBgKd1w+pKfTNPf3WcWoMi9sV1TWdtTPouqwKTxcZ7yya3ibh7kgnRgXx1pNRpw7TmsUXxHZ6XHBXI10dKsMkwf/zZ53aXtguqVnxctPSAA0/3lh2qAV7qvp5Or9Kdt64ioEiW5b32x5+giH25JEkRAPavFd2bokDQlsJWPU3LG5rZkFHGuKF+AGRX6M4avzGjjBCtB6k9HK23Zl58OFNHBbEkeegFnTchKgCbDN4eKi4fHdrj8/JyLqhaaTRZXLr0ANhTIS02ml0gcu/ys5NluQwolCRpjP3QXOA48AVwi/3YLcDn3ZqhQIDSB/T5jVmYLDZn5D4swIv0wjqaLTanqDo2KDkwmq18d6KCeeOG9OpuxKggb1bfMY2wVpZMZ0i2b1aaPSasV+qceJ2RCqkV2TItnrtYUD0n9wEfSJLkAeQCv0Z5w/hYkqRbgQLgp928h0DAqh/yeHP7KVKiAymsNeCrcScmTMv2k5UATBweSIjWk+zytuKeV92IwWRlWi/ZMd1l/FB/Zo8JZemMEb1yfccmplqDGZvs2nVlQKklo+xQHfyRe7deaVmW04HUdr41tzvXFQhaI8syGzNKAdiQUUq13kRUoHebzJKYUF9iw7TkVLYV9xp7Nk1PFeLqaTzc3fjPryf32vUdW+yr7JUrhefuhtkqYzBbnTWCBiuD+9kJBgUnynXkVRvw07izMaOMXTlVTB4Z5BT3UF9P/L3VxIRpyanQI8st6/PV9jZ4wVrXTAHU2FMhHWWJXb78gP3NTqnqObjf6IS4C/odGcX1vLWjpW7MN0dKkSR49KqxGExWgn08+N2Vo53ReKx952dMmBad0UJFq41Ntfba6YEumt/toXLDTYJq+ycYV7dlHFaM1SYPeltmcD87wYDk7Z25PPNNJjWNJorrmnhn12nmjAnj2gnDuHx0KC/8NAl/L7Uzcnds63eIfOtFVYeoBXoP7rS3jpAkCY1aRUm9Ul8+wEV/Dg5aFwtz7DAerLj227igX+KogX64sI4P9uZjk+GJxePQqFX8d1mLPx3aTuQOkF2uY0ZMCAA1jSYCvNUuXebWS60ir6oRoE0JBFektRUzLz68D2fS+7jub7ygX1LbaCKvWkl1/OpIKVszK7jr8kva7ZgUP9SPmbEhzLLv7Az19cRP495mUbWm0USQj2taMg5a91F1lCt2VRxWTIC3+oLTVgcaInIX9CvS7S3r1CqJ9WlKrZaONgb5e6l579YpzseSJBETpm2TDlnTaCLIRf12B450yEBv9aDuGdoZHP1re6PUQ39DRO6CfkV6QR1uEiwcH4EsQ9wQX0aE+HT6/JgwLadE5N4GR8pf+CCPVDvD3LHhzIwNYcXCuL6eSq8jxF3QLgfza/n39lMX/b6HCmoZHe7LjBhl09HC8REXdH5smC9VehO19hTI6kaTy6ZBOnDsUo1wcUsGlEXU926d4hJvdELcBe3y8paTPLshi6Jaw/kH9xB7c6vZmV3F3LFhzB4TxszYEG5IjbygazgWVXMq9dhsMrUGk8umQTpwWDFD/Ad3doigLULcXZSKBiO/W5PO/R+lcaykvs33ahtN/Ghv/7Yxo+yizMdksfHw+qNEB3nzm9kxhPlpeO/WKQy7wHS1lowZPTqjBatNdnlbxhG5u3qmjKshxN1FWbO/kE/Tivkuq4J7PjhEk8nq/N6WzHKsNhl/L/VFE/fdOVWcrmrk0avGdqty4bAALyQJyuqbqG5UNjO5ui2jEbaMSyLE3UXZkFHGxOGB/PtXE8mvNvDKtpPO723KKGNYgBe/njGCgwW1VDQYzzp/9b4C7vngIC9tPoHN1v1y/BsySvH1dGd2XPfK3rq5SWg93GkwWqix++5BPv2zrszFwhm5C3F3KYS4uyAF1QaOlzawcPwQpl8SwtWJEazeV4jZasNqk9mTW83suFCuSlAyVjYdaxu9G81W/vLVcXbnVPPatzl8uK+gW/OxWG1sOV7O3LFhPVLvw1fjjq61uLu45+5IhRTi7loIcXcBjpXU8/zGLKz2CHuDvcKio9fnkqSh1DeZ+fFUNdkVOhpNVlKiA4kN0zIq1IcNZ1gzu7KraDRZeeX/kpkRE8yz32Ry9/sHufv9g7yz6/QFz+/H3GpqDWYWXGBmTEf4atTojOYWcXdxW8ax5V6Iu2shNjG5AP/6/hRfHyklVOvJsktHsiGjjIRh/s5dn5eNDsXbQ8XGY2UkDvMHlJ6gkiSxcPwQ3tye2yZffENGGb4ad2ZcEkJMqJaH1h7mVKWemkYT32ZV8Ktpw1F3cru/2Wrj2W+yCPX1ZNaYnulE5IzcDa5dV8bB5bGh1OhN+Lp40TBXQ0Tugxyj2cp3WRWo3CRe2HSCfadrSC+sY0Grfp0atYrZcWFsPlbG/rxa/L3UjLRvHFowLgKrTWbTsTJOVzXy29VpbMwo5cqx4Xi4uxEV5M2aO6ex+XeX8/g142i22DhR1tLq7kSZjr9tzOrQl39n12mOlzbw9LXje2z3pK/GHV2zmXqDGQ93N6fn7KpMjwnhhZ8mIUm914lK0P8Q4j7I2XGyEoPJyl9/Mh43CZat2g/AwjOaMf8sNYoqvYn1aUUk2aN2gPHD/Bgb4ccrW09y30eH2Hy8nOHBPvxy2vCz7jUhSmkZl2Yv/AXw5vZT/Ov7U86yAmfyeXoJk0cGOS2inkCxZSz2HHe1EDWBSyLEfZBis8k88cUxntuQhb+XmutSInl4YRz6Zgtjwn0ZFaptM/7y0aEsSlQWUB0iDUq9lueuS6BS10xGcQN/uyGRbx6YSUp04Fn3jAz0IkTrQXqBIuQmi42tmeVA+/nyBpOFE2UNTB3Zs42rHbZMncFMgJdr++0C10WYcIOUE+U6Vv2QR2SgF3fPugS1yo1fTBnO0eJ6pl8S0u45TyweR2OzhasS2i5sJkUF8PiieErqjVyd0PGipyRJJEcFkl5YC8DuU1XojBYCvNVsyCjlkYVxbaLoI0X12OSWJtE9hWNBtc5gdvn65QLXRYj7ICXNHj2/f+sUZ+EtNzeJv92Q1OE5IVrPDvt5Lp0xslP3nRAdwNbMcmobTXxzpBStpzsPXjmaxz8/xq3/PcCvpg13luh11G1PiuxpcXfHbJUpazAyNsK3R68tEAwUhC0zSEkvrCXQW83w4LProPcmc+LCkCT47Zp01qcVsyR5KEuShjF5ZBB7c6t5a2dL+7z0gjqGB3sT3MPNq/28lGi9pK7J5evKCFwXIe6DlPTCujYLoxeLsRF+LJsxku0nKwny8WD5/Dj8vdV8fOc0rkuJ5HBhvTPfPq2wluSono3aAfw0ygdSi03GX9gyAhdFiPsgRGc0k12h7xXh7Ay/nzeaRYkRvHJjchtxTY4KQN9s4VSlnvomM+UNzYyN8Ovx+/tqWtxGsaAqcFWE5z4IOVJUjyzTZ+Lu7eHOP3+ectZxx8JpekEd8UMVUY9up31ed/HVtLyhuPoGJoHrIsR9ELL9ZCVqlUTK8LPTFfuSkcE++GncSSusxc9L+dXrHXFvFbkLcRe4KMKW6eeU1Rt56svj1Daa+CytmNX7CjBbbTy87gi3/fcAG+11YhzIssyGjFKmXxKCn6Z/CZubm0RydCBpBXUU1jQBEBXYu5F7gFhQFbgoInLvx8iyzPJ1R9hxspIT5Q3sP61EvDFhWlbvL8RP487O7Eo2/tbPWS7gWEkDhTVN/GZWTB/Pvn2SowL457fZnCjX4atx75UFTxG5CwRC3PsVGcX1/PPbHCw2GwAGk5UfTlWTMMyf3TlKZ6QqvYmvjijR+oe3T+Wmt/bwx0+P8uHtUwGlPK+bBFfGh/fNkzgPE6ICsMmw5Xh5r0TtAFoPdyQJZBmRCilwWYQt009oMlm598ND/JhbTWm9kdJ6I/VNZm6aHM3au6ZxfUokD80bDcDaA4UMC/Bi/DB/fjFlOD/mVjsLc50s13FJqLbHc8d7iiT7Im99k5mooN7p6elo2AHg7yUid4FrIiL3PsZstfHXbzI5mF9LXrWBD2+f0m55gL//LAmL1cY/v8uh0WRlVpwikiFaD2QZdM0W/L3U6Jstzk08/ZEgHw9GBHuTV23otcgd7LtUbbYeqzQpEAw0ROTex6zckct/dudhtsosXzCmw7ovAO4qNxLs9dYdxb0ckWlDkxkAvdGCTz+v2+1I0Yzuxd2zvhq1sGQELk23xV2SJJUkSWmSJH1lfzxSkqS9kiRlS5K0RpIk8RfWATkVel7dms3VCRFseGAm93RiEdQhjBPsOeOOKL3eLu66Zku/b8rgeA69HbkLS0bgyvSECjwAZAKOrYbPAy/LsrxakqQ3gVuBN3rgPoMKm03m4XVH8PJQ8cTicZ0+7ycTIimtN5IwrP3IvbHZgrafi/uC8RH8cKq63bLBPcX1EyMxmq29dn2BoL/TLRWQJCkSuBp4BnhQUgqZzAF+bh/yX+AJ+oG4/2f3aXZmVzE63Jfl88fg5ibx9ZFSyhqM3Hpp5yoetkbfbOHpr45ToWvmZ6lRbTobdYTOaObRTzNobLagM5o5kF/Liz9NItS384uf8UP92uz+9D8jctcbLWg1/Vvch/hrWPmr1F69x02To3v1+gJBf6e7KvAKsBxw1FUNBupkWbbYHxcBw9o7UZKkO4A7AKKje/8P8fXvcjBZbHybVcGwQC8uiw3h92vTcZMklk4fgcrtwgpsPb8hizUHCtF6ulPfZO6UuO/NreHLwyXEhmnRqFUsmzGS61Pa/fF0Goct02A0Y7XJNJqs/T5yFwgEvU+XVUCSpEVAhSzLByVJmuU43M7QdptnyrK8ElgJkJqa2n6DTRRRnhAdcM6Fxvb4LK2Yz9OLCfPV8IcFY6jSm3hkYRw7sit57ptM3vb1xGhW8slPlusYG+HHe3vy+TaznJEhWh69Kg53e5PnwhoDr3+Xw2OL4tmYUcYXh0vYfrKSX88YgZsk8f6efMxW23mbQudU6gH45O7pPeYHt47cG03Ke6oQd4FA0J0F1RnAYkmS8oDVKHbMK0CAJEkOdYkESrp6g5K6Jl7YdIIP9hRc0Hk2m8zzG7P4MbeaNQcK+TxdmcLocF+euy6RlOGBBHh78OhVcYBSHrfZYuVvG7I4WlzPu7tP886u085rPbT2MKv3F/LDqWpe/z6HI0V1XJUwhIfmjWFCdADNFhtZpboO5+Mgu1xPmK9njy70+XioULlJNDRZ0Bvt4t7PbRmBQND7dFkFZFl+BHgEwB65PyTL8i8kSVoL3IAi+LcAn3fmekazlec3ZnHjpCgamy1sPl5OqH0jTk6F/oLmdriojtJ6I3+YP4YXNp1g7YFCAGLCtEQFefPerVMcz4E3vj9FekEdQ/w16JotvHpTKmv2F/LSlpP8mFtNY7OF/XlK27jtJyvIrWzkoXmjuXdOLNCS+bHpWBlv7cylwah43zNjQ8/y8nMq9cSEte1d2l0kScJPo1hD+mYRuQsEAoXeUIEVwGpJkp4G0oB3OnPSK1uz+c/uPHZlK303yxqMeNk3oORW6bFYbU6b5HxszCjD3U3il1OG898f8sgq06FRuzEsoO2OSEmSSIoKIM3e89PX050ZMSGMH+rPw+uPUq1vBmDp9BEcyK9h/aFiACa0yvIYFuBFiNaTf36Xg6e7G3FDfNEZLfzlxHHGhPtyaaxiJ8myzKkKfbc99vbw81LTYGwl7iJyFwhcnh5RAVmWvwe+t/8/F2i/EWcHnK5q5K2duSRFBXC4sA43CRKG+XO0uJ7hwd7kVxv4MbeaLw+X8Mer4zu0NcobjDz+eQZ7cmuYHhOCv7eaCdEBbDpWziWhWtzaWTSdEBXI9pOVFNc2cUV8OJ7uKsL8VLy7dFKbcY99lkFGcQOSBImR/s7jkiQxITqALcfLWbEgjmWXjsRotnLVqzv57Zo0JkQH8vt5o527R3s6cgfFd69vMjttmf6e5y4QCHqffrFD1WqTuXJsOP9bNpkHrxzNk4vHsfJXE7kyPpwVCxRf/Kkvj/PxgSL++nVmh9f55GARm46VMyrUh9tnKpZIcpQSZcd2IKpXJw5h0vAg4iL8uGX6iA6v7bBfYsO0bUrKAvx8cjQ3TY5ynq9Rq3j1/yZwSaiWvbnV3PdhGsdLGgCICev5hs1OcReRu0AgsNMvVCAmTMubN08E4P65sc7jb/0qFZ3dw86u0KNWSaw5UMji5KHMiDk7e2ZDRinJUQF8es8M5zGHKHcUMceE+fLxXdPOO0dHF6H2uhvNjgtjdlxYm2MJkf6suXMa32aVs2zVAR5ef/Sc8+gOfho1JXVNzsjdx6NfvKwCgaAP6ReR+7nw1aiJ8NcA8PDCsYwM8eHh9UcwmCxtxhXWGMgobmDhGfnmE6IDWJI8tFN56OdiZLAP/zcpip+lRl3QeXPiwnnwytEMC/Di+pRIQrQ9X43Bz0tNfZMFnT1y9xWRu0Dg8gwIFYgJ01LWYOSapAjGD/XjxpV7eHVbNo8sHOscszGjDICF4yPanOuwSLqLm5vEc9cndunc++fGtvlE0tP4ebnTYDTTaBf3/l44TCAQ9D4DQgVumhxNclQAYb4awnw1TBsVzJ7cmjZjNh4rIz7Cr1crDfZX/L3UmCw2qvTNaNRu591MJRAIBj8DQgWuSojg9/PGOB+H+npSZzA5H5c3GDmYX3uWJeMqOLKHSuqa0HqKSogCgWCAiPuZBHirqTOYnY83HbNbMgmuKe6ORthFtU3CbxcIBMCAFXcPZ6EsUPz2mDBtr6QZDgQckXtxXRM+nqLzkEAgGKji7qVGlltqmJ8o0zFpRFAfz6rvGBXqA4DO2P9ruQsEgovDgBT3QB8lUq1rMmOzydQaTL2SYjhQiAz0ZvwwpVeK8NwFAgEMUHEP8FKEvNZgUgRexuX7ZTpSQIXnLhAIYKCKu7e9hrnBTE2jkjUT7MKRO+DcpCVsGYFAAAMkz/1MAuxRel2TCZ9G5SkE+bi2uF8SquWOy0Zx+ejQvp6KQCDoBwxMcbdnh9Q2mvFSK2V5XV3cAR69auz5BwkEApdgQIq7n5caSVIWVD3VirMkxF0gEAhaGJDirnKT8NOoqTOY8FApNdqFuAsEAkELA1LcAQLtu1RVbhJaT3c83cXmHYFAIHAwILNlAPy9PahrUrJlHHnvAkGXsJjgs3ugJE15bKiBdbdBbZ7yuCobPr9XOe7qmJvg41tg1SLl39e/7+sZCTpgwIq7ErmbqGk0EeTj2dfTEQxkcr+D9A9g3e1gNkLGOji6VhF0qwXW3wFp78GmP/b1TPue7C1w/DMwNUJjFex/Gyqy+npWgnYYsLZMgJea3MpGrDaZcD9NX09HcLHJ/wEy1sP8v4J7N9dbjn8BKg+ozoYdf4Oi/aDyhLyd8MY0qDoJ0dPh8IdKNO9mtwBVarjqRQi+pNtP54IwNcJXv4MZv4WGYvjhNXD3giWvQ84WSP8QfCPg6r+Dxu/819u7EjK/gMARyjnunnBiAxTsgTl/Ut7Uxl4DI2cq47yC4NYtYKiCv8cpYp+mg1GzIfaKXn/6gs4xcMXd24Nagwmz1cbYiE78AgsGD8Z6+GQZ6EpBGw6X/6Hr17Ka4cTXEH+tIta7XgFkRTitJsWqiV8CMx9SLIja0yDblHNzt8Oh2KsriQAAIABJREFU/8GVT/bI0+o0JzbAkTVQdlQRd7UP6EqUTxt7/qU8p7xdirBf/fdzX6tgD2xYrrxB5e1U3hQmLlU+xZh0yhtd/m449inctQtOboL4xaByB98hEDUFdr4E1mZIex/u3Q/asHPfU3BRGMDirkZntNBstolMma5iMcGmR2D89TB8esvx755VxMGBJMHMB+GSORd/jgBH1sLBVS2PGytAX64Iy46/Qe73yvHIiXDlU+e+Vl0BbHhYeYMAsDRBU60iWMNnKLZDY4Ui6EOT25577ettH7/3EyWSveIJ5WfUG1SfUsTziicg60vFNirco3yyqDiufL1tm+KD735F+bks+Zci/HvfgKSbIDK1/WubjfDFfeAfCXdsh68fhF0vwdGPwWaBiGRF2CMnQ/FBeGs2NDfA2CUt14hfrMxn2ETlnu/Oh/Bx8JN/g4dPz/0cyo7CvpXKJ7X97yivkwNJgmm/gTELlef0ze8hdRnIMmx7Etw1MO8ZCB3dM3PJ2w3bnwebVbn3lDuVTzb9jAEr7pNHKlUgTVYh7l1m9yuKZ5r1NfxmL2j8lUXDHS9A4HDwHaqMKzsCu1/tG3GvPAmf/wb8h7XMxycMpt4NcdfANw8p3m9jhTLHKXeB39D2ryXLipgV7oeh9taL7l5K1B5zJag1cN1KyPwSIpLOP7exi+Gr30L5MRgyvmeeb2tsVvj0Lijap1hGRfuVTw0qD5jwSyXKDhoFIbGKyH7/LLi5KyIXv0R5bTO/7Fjcd7ygWE6/XAeeWljwnPJppbFKeTOJSIadL8KcxyF7MxxerbyhjprVco3EGxXhv+JJ5VPAvn8r9xz3EyVo6AkszcoCd2UWVOVAwQ8QNg68ApXv1+Yp6yK/2asIf9r7yusq26BgryLun94Jt21tsdS6SlMdrLtV+V0KjoG6fOU1ikiCgOhuP9WeZMCK+/RLQrguZRjrDxVfuLjbbLD5T8ov6eh5Lcd/fF0RuuBL4Kq/d9/L7QqGGtj8GMx4QIk0ak4rf4RzH1c+BneFvN2w/TlFLFpTuA+ipiriseVxuOZV5SO/bIXr31aiMYCtT8Du1+D0DjjysRI9dcbL7So522DXy8ofZ20+qL1g2ab2P+7/7L/K18oT8Ppk5fWbfHv7103/QInyr34JJt3a/phLZiv/OkPcIiXazVinRKndfZ3OZN9bymszfIYSQfsOVX4na/OUN5bW8xxrF/cRM8HbXv56SAIUHTj7uhnrFBEs3AtJP4cYu0/uHQQ/XdV27BL7p5WUm5V/Z+ITAje8q/w/IArGXwd/H6MI/Pjrld+9Y+th/rNt/54sJtj4MCTc0PZTY3vs/Lsi7I6fQ8houP1b5c0YlE83b8yAdxcoNhVA8QHl9334NEj5lWLj7X9bibLPR32xYlU11SqPR14G0+9XXuuiA8qno9u/VQKE2nz41zRYdbXyZnj1S6Dt5RIgjdXKXBorzzlswGbLADx2dTzXpQxj+iXBF3bigXdgz+uw/jbQlSvHTu+ETY8qP7BD/1Oi2r5g48OQ/j58eofinX7+G0WUvv69Ei1cKMZ6JdKoPAmSW9t//9/emcdXVVwP/Huyh4QlZAGSEDZZg2yCAiKrexVxqaJCUUGlagW1rVDQouLW+nNXlIrWpVoQLKtaFVRAQI0KBUzYQ0ggEEgI2df5/XFeSAJJgOS9vJcw38/nft57986dOzNv7rlnzjkzt/tVMPZfMPAeNXvsWaM3ZfO2ENmvPI/uo1Xgf3CDRo18NctZtT2ZnMOqpaXv1jKGdoQb5p3ajhveFcK6wq9Lqj6elar/b7sL4bzbnVPW4HDo9hvYMAc+vq1u/9OJZOxVk8I5l8D4xTDgThWi189Trb39RZXTR3SHgfeq+ayM6P7qMzjxof7Nsxre2eMauOzJupe1Il7e+tDb/oXeW2VC9buXKqdb+4LehwvvKDeRVUXqFhXuvW6CWz9Wf8D1b5ULdlBl7No5qjn3uEbTpG7WEVVUf4i9Dlr3qr5vVMQYWHa/KhjiBQVZ+tD84HrY9JH2w6teKB/5hbTT0V6LdrD9c30ouJrPp0HCci1fDYhxRkesI/3bNzdxj1Z4evceC10u0xslLwMG3ad/4HcvwSVPQFANwrykWIfqaduqT3NgI0T00A7Q5TK1D75xof6xv18HS+/TCIroAZq+7QAddjrbrnpklz6BTSmMmKn2zH/dAO2GwN61Ouw7srP8d1R/FchDHtDzv35aIxz63Fz9NZZN0YfVpJUQ1a/qNIW5GhVSkAX5x1Tzvfzp8uPGwIu9IDOpvCwxg4Aq2qPdYI2wqG1bLZyoduy710BEtzM7d9VsFQR/3KEaZUXmj1OB8/t1EHZO7cpWFcf2w2sX6H9X8X/y9lNb9lUvqMmjbDTiFwxX/q3mIbwxas9P/hHu2aAacW3YNF+VhMnflZuNykY4V/wdLrirdvmeil2rtPxNIyE7tdxm3/Z8NZuFdYE3hujDZ9/30LITBIXrCO3S2dCqh+ZTWgJvXaymj3t/rPm+r0jCCvj3Lfr95n+rmerTP6tiMm2fOoOr4tu/w7ZPYf/PcPmzMHCyKlj/GKGy4rzbdHRbHd/+Db5+Uuvr5aOC/6oXtF6gD+xvnoFRj1RvOjwVZW07bBqMmI6I/GSMqdLu5j1r1qzaXcSJzH3p2Vl3jWivT6KcNH1CJq1XG54pUYfa7m9g10rtLDU5L9a9pFp3syj9E0/UVsVLtZxrXtVh6A9zNawudTPc9L7e+O0u1A5VnKeTNn5drEK09bnOrfjaF3SIXJSrHXLb5/qn3/G5ljPvqNoux8zRh1xGojq7os/Xm3T5VDjwP7U/VyVM96yGzx6GwX+AvrdWXw5vX7WlHtmhGsiwP0OTCjeSiArLNr1VMB07AIXZJ7drYY4OwcO76MPzTNn2Gax6HIY9DLFjzvz8gBYQ97Y+FCs6Q39dog6wUY+opu1M/JtqXVu0hTGvQ166aqLiBds/0/7Tpje8e7W2T9o2SN0EvcZW/wDc9BGsf1XNX6drIqoK30C1gbfpXd4ece9A4moY/bKW3RU0j9b7x9sXLnoIhk/T32nb1Ky3d43a0e/4XH0GR5O0vQ5s1D7bb7yOANa/rqOh0a9W7zeoCv/msP4V/X75M2oyy8vQvtljtEZYnUjCp7B8ivbz2Ov0HhAvLUfMIHUwX/K42u+rI3qAjjwLjgGiD4rSIv0PjYEF41XjPrxTzVG1UYC++ivkZqis8vLhscceOzBr1qy5VSX1DM29f38TF+ewDeZlqCaUfVC19O5Xq02rOE+Hoolr4JaPK9vKyzi8E+YMVm38pvdPfeGKT+V+E7TDn0hpKbxzhdr8ysK8kuPUjHHF3/RB0rIT9L5JNY1P/6RRDJ1G1RyiZwy83EcF0bCHYZ6jPhO/UA2nKoryVePJPaLafnG+bnd+XVkrP7hVfQoHNoF/M9VW/Zqcuj3qSmkJzLtENZR7f9DQPIBzf6vlGTJVzSeg9V9yH6TvKj//ULw+3O76tnb+joptOm6R7ivIhlf6qR180qrqtTZXsOKPapIIaaca/t1rVLNf8ZDasvuOq5w+ca1qdvt/gVY94fbPwKsOllNj4G8doduV5bbzN4aogJr0Ve3zrS1Hk/ReLsyG6/4BvW6sfDx+Ocy/VZ2lAc20HTqOgJs/OnNB+EJPPWfqZv2dvhte7gtXvQj9K5jlUn5WM+OBTaoQ3vWN83xtS/+gzt3o8/U+PbCxXIZd9xb0+q32z88fhgGTyk091VGUp/9n77E6IoAaNXfPc6gGhqhtMX652oK9feC6N/XGH/IAvDlUJ3Dcs76yU6+0VBvTN0AnlpwO3r7ayN/PUbNLVXh5wehX1Gzz6Z9UO1t4u3bUwzscYWl++sfs+ELtiOHd4OvZOhTuekXV+aZuVk18yIMqzH/jKHN1gh20bjfMU/MDAhfeD++OVjNGmXAvLtQY5az96hAdMaN+BDuoljP6Vf2PPhqrzkDQ0UnyD/rQm7RS/9P9v6hvofW55VEPbS+Ai/9a+5tLRP0DG+boqCewhdpBsw+qrbo+BTtoXQqy9L8YMUPNTGFdYPMitf+fc3G58zUvQ+3P4gUdhsFls+sm2EHbo1Ws+ltAnfOpm1VpcgctYtQ+vf8XfeCfSPer1DyZuFp/d7lMzSO10XCH/ZlKZsOQDjoaTYkrF+5FeeqPyj9W975XFZc8oQpZdqrmO+g+lTNvX6a2+U4j1JTzywewdz38/rtyE05V7Fypo/zuo0/r8p6nuZ+KfT+qdjjw95Xtwj++5dCIXq/ZBFFbVv9dhWrLjqoFlHnuI2IdE0ma6JC84wi48T2YO0y1tfBq7MbZB3WoWpV9+Ex47xo4ug/+8JPeBN+9pJEvYz9Sjc0dfP2UmkFaxIBBbfVlGkurnhp94O0H616BP+0sj+5wBslx8NYo9aP0Hgvzx6td98GEugtLZ1E2wmzaWsMZQc2RGXvKozCcxZJ7NSb8j9s14unLR2DKJjUznm3867d6r9y7QX+vmq339YRl2ifri0Px8MZFGt6bsdchS9aqrGh7gU488/aFzQs1YqqMzH0q3P+4Q49Ts+buIb39DGg7QJ/w8cvK92Umw5ezVLD2ucU1171wKvSfqJEkV/wNxn6oURc3vK1beFfocrkOl3z81KMfM1Cncle1tYiBoX+um2AHfYqn71KtGPRGjuzrPsEOamc9/y644R347Tv6fdwiGD5dNZMNr+vW4SLnCnbQ0UpgSzVxFObCzq80esNTBDuoX+faOSpgy/pD82g1GThTsAO0aK+KRFGejvBa9zo7BTuoYnFkZ3n00K9L1Xxan4Id1Oc35nX1b/W+GW6Zr5OsAlvCz++qvwVUQcrYU95HQs/RYAXv01sosdbjVBFpC7wHtAZKgbnGmJdEpCUwH2gPJAI3GmMyanudKokZpMI9K1W1n88eVsfr1S+6bqagty9c9XzlfVc7wiUjusE5oyofaxWrf5qr6eZYme/XpY4h+Laq/RH1iY8/XPn38t9lzrDh09S/8O7VqsWf5vDyjBBRAZ/ykwr2olx1onkaPa933iSfmghpp5/7vtfom5EzXX9NTyWknTo4j+1XZ/LhbVWbh+qDXjdW9jkMvk+3+eM0Ci60s04wu/K56udtnIK6qDPFwEPGmO7AQOBeEekBTANWGmM6Aysdv51LlENYJMep133HFzrd+GzUSJq2cjzsluoEqJxD1ZuCPAERjVTqNVYnvLiC6P469N34oWpD7Ya45joNgRYO4b7xQ/085xL3lcXdlLVFRqKGO4IuWeFJXPmc+tYWOvwC3a6qdVa1Fu7GmAPGmJ8d37OAeCAKuAZwTBvkXaAWMW2noE0vjSNNidNQwJJCNYGcrfQYrWaZbZ/q77Cu7i3PqQhpr07yMkeqs4nqDxgNRex2Zf07Uj2JMoUnYYVOyW/lgmUSGgplo5ijeyH5J/0eWc3cD3fRtLWaaEoK1f7erE2ts3JKrxeR9kBf4HuglTHmAOgDQESqnFooIncBdwHExJzhmgy+geVTq8tiVqPOIA62sdH9ap21tsZhNgr3cOHuaiqGhVZc5OpsJDhChXphti5bfDY/6Jq31WikjL26XlJYF42o8jT6jtM5J+3r5guos5dJRIKBRcBUY8yx0z3PGDPXGNPfGNM/PLwWazFE9dcY1cS1Gp9ahydcg6d5tNqZ03dp1E7zWs5obCw0aalzD/ybQcdh7i6NexEpnw3raSaI+sbbF5pFq5MyOc5zFUIRnTBVx7Xx6yTcRcQXFez/MsZ84th9UETaOI63AQ7VqYTVETsGinJ0xlfUWd5podw5GXqOZ0WGuIthf9Z11n3sW7qOmyM8VZjVJyHtNKIs9zC0b9y+mFpLARERYB4Qb4ypGEayFJjg+D4BOI3VempB+yHlM/zOZGpyY6UsIsSTnan1Se+x6mS3lDsS7X2ibZF/tHxp5EZMXQxwFwLjgc0istGx7y/AM8ACEZkIJAGuizW6dLZ+xroo6qIh0bKjxs2f7WYIy8n0vlkXL2sW5e6SuJ+yUUx7F8yx8DBqLdyNMWupcllAAEZVs9+5BIaUr5lhgZH2Bc6WKog+z9rbyygbxXji3AcnY42zFovl7OGcUfryjvqYQOZmzuK4KIvFctYRFKYLAZ4FWM3dYrFYGiFWuFssFksjxAp3i8ViaYRY4W6xWCyNECvcLRaLpRFihbvFYrE0Qqxwt1gslkaIFe4Wi8XSCLHC3WKxWBohVrhbLBZLI8QKd4vFYmmEWOFusVgsjRAr3C0Wi6URYoW7xWKxNEKscLdYLJZGiF3P3WKxWGpg6+GtzNsyj0cGPkJIQAhrU9ayfPdyZg2axXNxz9E7vDdXd7q60jk/pv7Igm0LmDV4FkG+QQAkZiby+IbHySrMAmBw5GAmnjuRx9Y9xvge4+kT0eekayekJ/DU909RXFrMlH5TKDWlvPzzyxSb4lOW2wp3i8ViqYaCkgKmrZlG4rFE/Lz9eHjAw/xlzV/IKMhg99HdxKfHs3jnYnqF96JdM32FX1ZhFtPWTONQ7iFaBrRk+gXTKTWlPLruUXZm7OS81ueRWZDJ21veZv3+9cSnx7P1yFY+Gf0JTXybHL92UUkR09dMJz0/HX9vf6av0Xz8vP3o2rLrKcsuxhiXNczp0r9/fxMXF+fuYlgsDY7/Jv6X71K+49FBj+LjVa6rHSs8xqx1sxjfYzx9I/qecb4rdq/gn1v/SUX5MDR6KL/r8Tse3/A4t8XeRlpeGquSVvHIwEd4YsMTbEvfVmVe7Zq146mLnsLf2x+A7RnbeX3j60w/fzqtgloBcCTvCLM3zGbSuZOIDYslMTORx9Y/dlzLPR36terH1H5TmbF2Bvuy9lWZpkdoDx6/8HEA3v/1fZbsXFJjnjlFOSRnJ3NR1EWsSVlDRJMI0vPTGdBqAOsPrKdPeB92Hd2Fn7cfYYFhgAr31NxUBkUOYl3KOjqHdKawpJDEY4k8OeRJRncaTXFpMbesuIX49HiGRA1hbcpaooKjCPYNPn7tvOI8krKSeHXkq4Q1CeOWFbcgCB9d8BpNX51P2D2/J7BHj5+MMf2rKrsV7hZLA2V/9n7GLBlDXnEeD533ELf1vO34sVnrZrFoxyKigqNO0ghPxb5j+7hu6XW0CW5D+2btAcjIz2Bj2ka6t+xOfHo8UcFRZBZkkl2UfXzf4MjBxwV4GSWmhNXJq5l07iSm9JtCUWkRt6y4hYT0BIZHD+flkS8jIvzp2z/xeeLndGjegQVXLeDOL+5k19Fd9G9dpdw6iazCLOIOxh0vy7DoYXhJZZfiodxDbD2ylRXXriAyOJKRC0YS7BfMOS3OqTHvC9pcwI1dbuT5n54nJTuFKzpcweDIwcz931zG9xjP7szdzE+Yj6Fclo5oO4JL21/K83HPk5aXBkD3lt2Z3HsyIgLAnsw9fLLjE+7pcw/Ldy9nTfKak659XqvzmBA7AYClu5YiCH1f/IKsL7/Cv0sXOi1baoW7xdJQKDWlPLnhSXpH9KZby27M3jCbnKKck9Kl56eTU5RDz7CebDy0kQ7NOwBgMOzI2HFc2xzXfRwPn/8wJaUlPLb+MbYe2Vrj9Y/kHSG/JJ/F1yymdVBrQE0EY1eMZXvGdoZGD2V18moCvAPoHd6b71O/Z2Tbkbw44sXjgqsij3z3CMt2LaNTi07kF+eTlJXEsOhhfJv8LZ2ad0JE2Hl05/F8IwIjOJR36LiWe7ptdvvnt/PzoZ+5qetNzBw486Q0KdkpXL7ocqb2m8q5Yecy8YuJPDfsOS5rf9lpXeNMKT5yhNRZswi9626KkvdxeO4/oLT0+PGgIRcSdvfd7P/TnylKTT29TEtLKNixk+Dhw8n+5ht6bEuwwt1iaSjMT5jP7O9n4+/tT2RwJBn5GfSL6Fdl2us6X0dsWCwv/vRiJRNGq6BWPHDeAzwf9zzzt83nvSveY8vhLTz747MMajOIQJ/Aaq8vItzQ5QaGRA2ptH/30d0s3rWY+/rcx392/IewJmH0jejL25vf5raetx03S5xIZkEmL/78Iul56QD0jujNhB4TeOmXl9ibuReAqKZRPNDvARZsX8APB36gW2g3JveaXOXDojpSslP4d8K/ubvX3QT7BVeZ5qblN+GFFz3DevKfnf9h9U2rz2hUcyakPPggxz79DN92MRSnHca3VSv8OnUEoOToUfLifsK/R3cKtm0nePhwOM2q+sW0I+LBB0h97DEiZ8+2wt1iOR2+2fcNr218jRJT4rYyJB1LIjY0lh1Hd5BVmMWLw19kVLtRtcorpyiHMUvGkFuUS35xPgMjB/LqyFfPSGi6g4Ldezjw6COU5uQSfu89eIeGcvDpZzD5+Scn9vIidOJEml99FaU5OeyfOZOQ3/4WYwxHFy4kcvZsDv3f8wT06M7Crkd56eeXCPAOYHJ8JCM2u6gCplQ17BEjyP76a7yaNKHjsqX4RkXp4eJiEm8aS/7WrYTeOYmIhx6q1WVExAp3i+VUHM47zOjFownxD6FzSGe3lSPIN4g/9P0DezL3sD1j+3Gba23ZnLaZf279J4E+gdzf734imkQ4qaSuwZSUsPfWcRTs3o1PSAjFR47g3bw5pqiIwN69TkpfsHsPRSkpdFy2lPT33yfjvffxDg+DUkPJkSP4d+9OQXw8+PoS8tE8nk//mJY70hj93PcExsbi26a1S+rhGxVNxIMPkDF/AX4xbQkeNqxyuffsIXPRIsLuuw+vgIBaXcMKd0uDZn7CfBKPJXJvn3t5dN2jjO06lvySfF755RWKS0+O9/Xx8uH+vvfj7+3Pc3HPUVRadFrXySzIJLMgk4WjFx63X3sSh+f+A5OfT8itt3Dgr38l7O67Kdq3j8NvzsW7aVPaPPUkfjEx5P7yCwefehqModX0aTQ57zxAheaBmY+Qv2WLm2tSM6WFBRTtTSLy2WcI7NOH3aOvwRQUEPPeuwSdf/5J6YtSU9n9m6uQgABK0tMJumgIOd+tAxGCBg8iZ/UaAvv0oTAxEUTwCQuj6NAhvIOC6LhsKV5BQfVfSSdhhbulwZKQnsDY5WMpMSV0a9mNhPQEIgIjKCwtJNg3mG4tu1V5Tk5RDr5evnh7eRMbGnva1/tNx99wcbuLnVkFp5Dz/Q8kTVAN3r9bNwoSEvCNiaH48GF8W7em+NAhArp3p+0bc9g95lpMQQF4eSFeXscFWPq773Lw6WcIGjIEr8Dqbe6eQECP7oROVpt71sqVFKcdJmTsTdWmz16zlqMff4xPWCjhDz5E9terACF4xHCOvPEGITffTGFyChkffqhOTR9vQu+YSOC5PeuvUi7ACvcGTmFJITO/m8kV7a9gRMwIp+WbV5zH9DXT2Xtsb43pvMSLyb0nE7Erg12v/x8Lr2tFXpB3ra8bGxrLjIEzmLF2Bnsy99SYNi0vDR/xITI4ks2HNzM0eihrU9biJV58fNXHnBNychjbjowd3Lj8RkpNKR8OfJ2mz8yjOC2t1uX1BIpSD+IdEoKXv5/ackeOJHvVquO23Ox160h95FG8w8MoSTtMzHvvIj4+7L11HD6tW+MdHETh3iSCBg8mes7rHm9zt5weNQl3O0O1AfDGpjf4bM9nrE1Zy9LwpdVGJZwpczbOYWXSSka0HVFpAsyJ7MjYwRNfz+SpN3PpnlHM2KBgvrm9d62umVuUy5JdS0hIT2BbxjaGRw/H19u32vQdm3dkXI9xhAWGsXD7Qu7udTdfJX2Fn7dflYIdoHNIZ56+6GkKSwpp/upCsn+Mc0QjNFyB5t+5C6GTJiK+vmQuX0H4ffeSsWABftHR+EZF0eKGGyhOPUjBjh0EDR583HzR5onHyV6t8dMBvXoRPmWKFexnCR6ruadkpzBj7QwyCzK5o+cdXN3panKLcpn53Uyu73w9F0ZdWCn9sl3LeHvL2zTza8aTQ57kq71fsXjnYloHt+bZi57lzf+9ybqUdfVZrdpjDNcsPsj+yAD2tg9k6LIkNo3rz6qiLTTzb0Zzv+Y1nh69L49rlhzCt7C0xnSFpUU082tKeJPwGtMVlxSTdiSJ0GOG4sF98Vn3C36dOp126FYlDBzIOUBucS5N/Zq61rlXaijcvZvwqVMImzzZddexWNxEgzPLGGO488s72Zy2mcjgSJKzklk0ehEfJXzEB/Ef0DKgJUvHLKW5vwq5pGNJXL/0eqKbRrM/ez+RwZHsOrqL2NBY4tPj6dSiE9sztjOg9QBa+LdwVzVPm65r9zH0gy2UeAvHwpsQkpqD38ABJM76HSsSP63xXO/CEq6fvRafghIOdgqpMa2fl2q/vl7Va85lpOWmceTcaEZOfoK051+g6MCBM6pTRQpK8tl7LIkOzTuc1rXrgm9UFBEPTEV8XXsdi8Ud1LtwF5HLgZcAb+AtY8wzNaXv2rSJebNveeiZwVBUWkR4YDhBvkEkZSUhCCWmhCY+QeQV5+It3senF5eYEgyGmKYx5BTlqJ3Wy5eYpm3JyM8goyCDAO8AooKjaqdt1jNF+5IJ6NGDwsRESjIyCL54FNlfrcSvXTvwrdmSVpqbS/H+A8S88zZBgwbVU4ktFos7qFebu4h4A68BlwDJwI8istQY82t155T6eZMT3bLSviDfIMJadEIQwvNCSc5Owc/Lj+iQzhzOS+Ng7qFK6aODo2gSGEYghqyjuwkLDCPAvzkRpoTso7tpHRyFv4tmojmbwHN7Ef6H+yhKSSHvf5tpefttHH71NQp27Tqt85tMmmQFu8VyluN0zV1EBgGzjDGXOX5PBzDGPF3dOTZaxmKxWM6cmjR3V7yJKQqouN5msmPfiYW6S0TiRCQurYGHqVksFoun4QrhXpVV+6ThgTFmrjGmvzGmf3h4zdEaFovFYjkzXCHck4G2FX5HA/tdcB2LxWKxVIMrhPuPQGcR6SAifsBYYKkLrmOxWCyWanB6tIwxplhE7gP+i4ZCvm2MqfntABZqnz2yAAAIJUlEQVSLxWJxKi5ZfsAY8ylQ82wbi8VisbgMV5hlLBaLxeJmrHC3WCyWRohHrC0jIlnAtjpmEwYcrmMezYFMN57vrDw8oS08JQ/bFidTlzbxpHrYewW6GmOaVnnEGOP2DYjzkDzmuvN8J+bh9rbwlDxsWzi3TTysHmf9vVJT+a1ZpjLL3Hy+s/JwBp5SF09oD0+ph20L1+RTVzypTY7jKWaZOFPN+gj1mUdjwbZFObYtTsa2STkNvS1qKr+naO5zPSSPxoJti3JsW5yMbZNyGnpbVFt+j9DcLRaLxeJcPEVzt1gsFosTscLdYrFYGiEeK9xFpK2IfC0i8SKyVUSmOPa3FJEvRWSH4zPEsb+biKwXkQIR+eMJeSWKyGYR2SgiDe6tIE5uixYislBEEhz5NahXNjmrLUSkq6M/lG3HRGSqu+pVF5zcPx5w5LFFRD4SkQB31Km2OLktpjjaYWuD7BvOiDd1xQa0Afo5vjcFtgM9gL8B0xz7pwHPOr5HAAOAJ4E/npBXIhDm7jp5SFu8C0xyfPcDWri7fu5qiwp5egOpQDt318+dbYK+VGcPEOj4vQC4zd31c1Nb9AS2AE3QNbi+Ajq7u35nsnms5m6MOWCM+dnxPQuIRzvfNaiAwvE5xpHmkDHmR6DIDcV1Kc5qCxFpBgwF5jnSFRpjjtZLJZyEi/rFKGCXMWavywruQpzcJj5AoIj4oIKtQb2LwYlt0R3YYIzJNcYUA98C19ZDFZyGxwr3iohIe6Av8D3QyhhzAPSPRJ+8p8IAX4jITyJyl6vKWR/UsS06AmnAOyLyi4i8JSJBLiyuS3FCvyhjLPCRs8vnDurSJsaYFOA5IAk4AGQaY75wZXldSR37xxZgqIiEikgT4Eoqv4TI4/F44S4iwcAiYKox5lgts7nQGNMPuAK4V0SGOq2A9YgT2sIH6AfMMcb0BXLQIWqDw0n9AscLZUYDHzurbO6irm3isENfA3QAIoEgERnn3FLWD3VtC2NMPPAs8CXwObAJKHZqIV2MRwt3EfFF/6B/GWM+cew+KCJtHMfbAIdOlY8xZr/j8xDwH+B815TYdTipLZKBZGPM947fC1Fh36BwVr9wcAXwszHmoPNLWn84qU0uBvYYY9KMMUXAJ8BgV5XZVThRbswzxvQzxgwF0oEdriqzK/BY4S4igtqG440xz1c4tBSY4Pg+AVhyinyCRKRp2XfgUnTI1WBwVlsYY1KBfSLS1bFrFPCrk4vrUpzVFhW4mQZuknFimyQBA0WkiSPPUajNusHgzP4hIhGOzxjgOhpaP3G3R7e6DRiC2sr/B2x0bFcCocBK9Cm6EmjpSN8a1UyPAUcd35uhduZNjm0rMMPddXNXWziO9QHiHHktBkLcXT83tkUT4AjQ3N318qA2eQxIQBWg9wF/d9fPjW2xBlV+NgGj3F23M93s8gMWi8XSCPFYs4zFYrFYao8V7haLxdIIscLdYrFYGiFWuFssFksjxAp3i8ViaYRY4W5pEIjIGBFZLSKHRCRPRPaKyGIRudzdZbNYPBEr3C0ej4jcj84s3gFMBH4DzHYcHumuclksnoyNc7d4PCKSBPxkjDlpVT4R8TLGlLqhWBaLR2M1d0tDoCW63vpJnCjYRaSDiPxLRNIcL2DYKCLXnpBmlogYx4sa/isiOSKSJCK3O46PF32ZSbbjxQ+dTjh/rIisclwj27HC5gROwHGN2SJyv4jsEZEsEflWRGJPSHepiHwqIgdEJNfxgoiHRMS7lu1lseDj7gJYLKfBD8AEEdkNLDHGbK8qkYi0RZd3PQQ8gC5vfBOwSETGGGOWnnDKx8A/0GVu7wHeFpHOwHB0tUxf4CXgQ+CCCud1RBddewYoRdfIf0tEAo0xb5xwjXHANmAK+nKUvwNLRKSb0XXCy/JbCbwC5AP9gVlAOA101U6LB+Du9Q/sZrdTbUAXdK0Q49gOo4s4XXpCunmoQA89Yf+XwMYKv2c58vldhX0h6JKuR3CsLeLYf78jbbtqyuaFKkn/ADadcMygfgLfCvtucOwfXE1+4shvBpABeLm7/e3WMDdrlrF4PEY19b7AMPR1aBvRt+L8V0RmVkh6OfApkCkiPmUb8F+gt+NNVBX5rMI1MlCNf4OpvP53guPz+IsaRKSz6PtFU9A3+BQBk4CunMyXRpfPLWOz4zOmQn5tRORNEdkLFDrymw204MxeOmKxHMeaZSwNAmNMCbDasSEikehLFP4qIq85hHME8DvHVhWh6Op/ZWSccLywmn0AAY7rBqMjgVzUZLLLkeb3wB1VXDP9hN8FJ+TnhS5HG4mOKBKAPPQ1cDPK0lksZ4oV7pYGiTFmv4i8hdrEO6N2+SPoMq3PVnOaM94HOghoB1xkjFlbttMxQqgNnVAb+3hjzAcV8ru6TqW0nPVY4W7xeESkrTFmXxWHujk+yyJpPkeF71ZjTJ6LitPE8Xnc1FLh9XTOys8XuLWW+VksgBXulobBFhH5Gp3ItAd9CcuVwGRggTEmyZHuUVSDXy0irwKJqKO0J9DRGFOV2eRMWYeadl4Tkb8CQcBM1MnbvBb5xQN7gSdFpAQV8g84oZyWsxzrULU0BB5G++rjwBfAfFRDnwaML0vkEPL90TfnPIXaxuegjthVziiIMSYNdeZ6o+GQTwNvAR/UdF4N+RWi9vVU4D3gNdSv8Iwzyms5e7EzVC0Wi6URYjV3i8ViaYRY4W6xWCyNECvcLRaLpRFihbvFYrE0Qqxwt1gslkaIFe4Wi8XSCLHC3WKxWBohVrhbLBZLI+T/Afpeg0INFcLnAAAAAElFTkSuQmCC\n" }, "metadata": { "needs_background": "light" } } ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "plot = trends.plot()\n", "plt.xlabel('Semana', fontsize=16)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": {}, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 4 }